

B/OX™ 315

Room Temperature Oxidizing/Antiquing Solutions for Brass, Bronze, and Copper

B/OX 315 produces light brown, brown and chocolate brown colors. The **B/OX 315** has a wide operating window to achieve the brown color and does not produce as much smut compared to other oxidizing solutions. The liquid concentrate is diluted with water and by varying the concentration and length of immersion a range of colors will be developed. B/OX 315 meets the standard of the Living Building Challenge Red List: An international sustainable building certification program.

Light - Brown/Brown

10% by volume 1 to 3 minutes at $65^{\circ} - 75^{\circ}$ F

Brown/Chocolate Brown

20% by volume 1 to 3 minutes at 65° - 75° F

Some experimentation should be done with properly prepared sample parts using various dilutions and immersion times prior to charging a production tank. Once the optimum conditions are determined they can be consistently reproduced in production.

The natural color of the alloy and the mechanical finish on the surface will affect the final color of highlighted or burnished finishes. The ultimate color will also be enhanced when topcoated with a lacquer or wax and, therefore, the topcoat should be applied prior to judging the color or before comparing with other antiqued finishes.

The easy to relieve **B/OX** finishes increase productivity by reducing the time required for buffing or burnishing and the consumption of buffing wheels, compounds and burnishing media is reduced.

EQUIPMENT REQUIRED

Acid resistant tanks, tumbling barrels, baskets, hooks and racks must be used with the **B/OX** and **E-Pik** solutions. Plastic, plastic lined, rubber lined, glass or stainless steel are suitable. Mild steel may be used for the cleaning, rinsing and sealant tanks.

FINISHING PROCEDURE

- 1. Surfaces must be free of oxides and residual plating solutions.
 - a. Plated surfaces should be thoroughly rinsed with cold water followed by another short rinse in a 5% Sulfuric Acid solution or **EPI's E-Pik 215** (1/4 oz to 2 oz/gallon water) to neutralize residual alkaline plating solutions.
 - b. Wrought alloys and sheet stock can be mechanically cleaned and deoxidized by burnishing, belt sanding, glass bead, or sand blasting. Chemical cleaning and deoxidizing can be accomplished with EPI's E-Kleen 146 soak cleaner or E-Kleen 128 electrocleaner followed by E-Pik 224. A cold water rinse is used following cleaning and deoxidizing to remove residual solutions or blasting dust.

2. Oxidizing Brass, Bronze and Copper

Immerse pieces, while still wet from the preceding rinse, in the **B/OX** solution for the length of time necessary to produce the desired color. Rotating perforated plastic barrels are recommended for processing small parts. When using dip baskets, the parts should be agitated when immersed in the solution to break air bubbles and to assure solution contact with all surfaces.

- 3. Rinse thoroughly in bottom fed overflowing cold water rinse. A stagnant hot water rinse can be used to speed up drying, but it should be preceded by a short cold water rinse to minimize staining. Hot rinses should be maintained at 160°F to 180°F and dumped periodically or overflowed very slowly. A rinse aid may be helpful in eliminating water spots.
- 4. Force drying in heated spin dryers, ovens or cob meal will minimize streaking and staining. Large architectural panels should be wiped dry or blown dry. Small parts do not require drying if they will be barrel or vibratory burnished immediately after rinsing.
- 5. "Highlighted" or relieved antique finishes are produced by buffing, scratch brushing, barrel or vibratory burnishing.
- Sealing the finish with a protective topcoat will enhance the color and impart corrosion and abrasion resistance. A clear acrylic lacquer topcoat such as E-Tec 520 produces a hard, dry US 101 finish. E-Tec 501 produces an oily US 10B finish.

SOLUTION MAINTENANCE

The **B/OX** solutions are gradually depleted through use but may be replenished indefinitely with periodic additions of **B/OX** concentrate. The strength of the solution and the amount of concentrate to be added can be determined by titrating the solution per burette titration control procedure **CP-1** available from **EPI** or by using a simple dropping bottle method outlined below. The strength of the solution can also be fairly accurately maintained by the immersion time required to produce the desired color. As the time increases, add sufficient concentrate to reduce the time to your established standard. A sample of a freshly prepared bath should always be retained as a control.

The frequency of additions will depend upon the volume of work processed through the solution and the color developed. Producing the darker black and brown colors will consume more than the lighter colors. Coverage will be on the order of 400 sq ft per gallon of concentrate added to the bath for blacks, and 800 sq ft per gallon for the light browns.

For optimum results, the strength of the solutions should be maintained at 85% of its original strength or greater at all times and frequent small additions are recommended. With automatic lines, a bath history should be established while running the first several (15 to 25) racks or barrels and by titrating the strength after each 5 loads to determine the point at which the solution is depleted approximately 10 to 15% and replenishment is necessary. Timed metering pumps, triggered by the load, are recommended for replenishing the solution and maintaining a consistent strength. If the ambient temperature in the plant varies considerably, then electric heaters may be used to maintain a consistent solution temperature.

The life of the solution and coverage will be increased by continuous circulation and filtration through a 50 micron filter. An alternative with smaller baths is to allow the solid by-products of the reaction to settle to the bottom of the tank and transfer the solution to a plastic holding drum to be retained for recharging the tank after the solids have been removed.

<u>Note</u>: For optimum results with brass plated surfaces, **EPI's E-Brite B-150** brass plating process is recommended. This plating brightener system produces uniformly alloyed and colored finishes which will result in more uniformly oxidized and highlighted finishes that greatly reduce reject rates. **EPI's E-Brite 23-11** copper plating process is recommended for superior copper finishes.

DROPPING BOTTLE CONTROL PROCEDURE

A sample of a freshly prepared production bath should always be taken as a control solution prior to running any parts through the bath. If a sample was not taken, a laboratory prepared solution at the same concentration may be used as the control solution. Titration of this "new" solution will provide the figure for D_1 .

- 1. Transfer a 5 ml sample of the production bath into a 125 ml Erlenmeyer flask.
- 2. Dilute with water to the 50 ml mark.
- 3. Add 2 ml 6N (1:1) Hydrochloric Acid to the flask.
- 4. Add 4 ml of the 15% by weight Potassium lodide solution.
- 5. Add 2 ml of starch solution. The solution will become a dark blue to almost black color.
- 6. Add the 0.5N Sodium Thiosulfate solution from the dropping bottle drop by drop counting the drops while swirling the flask.
- The end point is marked by a sudden change in color from dark black to light brown.
 Note: Upon standing, the light brown color will turn dark again but additional Sodium Thiosulfate solution should not be added. <u>The first end point is correct.</u>
- 8. Calculate the amount of concentrate to be <u>added</u> as follows:

 $C_2 = \frac{D_1 - D_2}{D_1} \quad (C_1)$

 C_2 = Concentration in gallons to be added to the bath.

- D_1 = Number of drops of Sodium Thiosulfate used to titrate the <u>new production bath</u>.
- **D**₂ = Number of drops of Sodium Thiosulfate used to titrate with <u>used production bath</u>.
- C_1 = Volume of concentrate in gallons used to make up the original "new" bath.

A test kit for the above procedure is available from **EPI**.

CAUTION

The **B/OX** solutions are mildly acidic. Avoid contact with eyes, skin and clothing. Wear eye shields, protective gloves and aprons when preparing solutions and while working with the solutions. Do not mix the **B/OX** solutions with alkaline materials, cyanide containing materials, or any other chemical substances. The **B/OX** solutions are toxic if taken internally. Do not work with the **B/OX** solutions without first reading and understanding the **MATERIAL SAFETY DATA SHEETS** furnished by **EPI**.

PACKAGING:

One (1), five (5) and 55 gallon non-returnable containers.

IMPORTANT NOTICE! For Industrial Use Only

The following is made in lieu of all warranties, expressed or implied, including the implied warranties of merchantability and fitness for purpose: seller's and manufacturer's only obligation shall be to replace such quantity of the product as proved to be defective. Before using, user shall determine the suitability of the product for its intended use, and user assumes all risk and liability whatsoever in connection therewith. Neither seller nor manufacturer shall be liable either in tort or in contract for any loss or damage, direct, incidental or consequential, arising out of the use or the inability to use the product.

2/10/23